Cloud condensation nuclei activity of fresh primary and aged biomass burning aerosol

نویسندگان

  • G. J. Engelhart
  • C. J. Hennigan
  • M. A. Miracolo
  • A. L. Robinson
  • S. N. Pandis
چکیده

We quantify the hygroscopic properties of particles freshly emitted from biomass burning and after several hours of photochemical aging in a smog chamber. Values of the hygroscopicity parameter, κ , were calculated from cloud condensation nuclei (CCN) measurements of emissions from combustion of 12 biomass fuels commonly burned in North American wildfires. Prior to photochemical aging, the κ of the fresh primary aerosol varied widely, between 0.06 (weakly hygroscopic) and 0.6 (highly hygroscopic). The hygroscopicity of the primary aerosol was positively correlated with the inorganic mass fraction of the particles. Photochemical processing reduced the range of κ values to between 0.08 and 0.3. The changes in κ were driven by the photochemical production of secondary organic aerosol (SOA). SOA also contributed to growth of particles formed during nucleation events. Analysis of the nucleation mode particles enabled the first direct quantification of the hygroscopicity parameter κ for biomass burning SOA, which was on average 0.11, similar to values observed for biogenic SOA. Although initial CCN activity of biomass burning aerosol emissions are highly variable, after a few hours of photochemical processing κ converges to a value of 0.2± 0.1. Therefore, photochemical aging reduces the variability of biomass burning CCN κ , which should simplify analysis of the potential effects of biomass burning aerosol on climate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: implications for cloud condensation nucleus activity

active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH an...

متن کامل

Experimentally measured morphology of biomass burning aerosol and its impacts on CCN ability

This study examines the morphological properties of freshly emitted and atmospherically aged aerosols from biomass burning. The impacts of particle morphology assumptions on hygroscopic predictions are examined. Chamber experiments were conducted at the University of California, Riverside, Center for Environmental Research and Technology (CE-CERT) atmospheric processes lab using two biomass fue...

متن کامل

In Situ Chemical Characterization of Aged Biomass-Burning Aerosols Impacting Cold Wave Clouds

During the Ice in Clouds Experiment–Layer Clouds (ICE-L), aged biomass-burning particles were identified within two orographic wave cloud regions over Wyoming using single-particle mass spectrometry and electron microscopy. Using a suite of instrumentation, particle chemistry was characterized in tandem with cloud microphysics. The aged biomass-burning particles comprised ;30%–40% by number of ...

متن کامل

Ice nuclei emissions from biomass burning

[1] Biomass burning is a significant source of carbonaceous aerosol in many regions of the world. When present, biomass burning particles may affect the microphysical properties of clouds through their ability to function as cloud condensation nuclei or ice nuclei. We report on measurements of the ice nucleation ability of biomass burning particles performed on laboratory-generated aerosols at ...

متن کامل

Impact of biomass burning on cloud properties in the Amazon Basin

We used a 1-D cloud parcel model to assess the impact of biomassburning aerosol on cloud properties in the Amazon Basin and to identify the physical and chemical properties of the aerosol that influence droplet growth. Cloud condensation nuclei (CCN) measurements were performed between 0.15 and 1.5% supersaturation at ground-based sites in the states of Amazonas and Rondônia, Brazil, during sev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012